Showing posts with label Shepherds Pi. Show all posts
Showing posts with label Shepherds Pi. Show all posts

Thursday, June 16, 2022

All bar one

 Final blog entry for this year. We got four videos created, and the blog, but failed on the Natures Bounty video.

Most of a sophisticated apple picker was built, but not enough to be ready for using in a videoed challenge.


We did try to rustle up an alternative in the last few hours which basically knocked the apples off but time just ran out, and we concentrated on delivering what we could do. Disappointing, but our first try at the competition and we've learnt a bit in the process. 


It'll be fun seeing what everyone else has done, but not sure we'll get away with doing it again, just a bit to much time.

Still, next up is Sidmouth Science festival, when we'll have a lot more robots wandering about. Think that's where we came in!!!!


East Devon Pirates

Monday, June 13, 2022

Videos

 Just a brief post to show our video recording area....it's actually a bedroom with the arena laid on top of the bed.


We moved here from the kitchen floor due to other people needing to use the kitchen for space and we can use this all day without being trodden on!!!

The camera is mounted on a tripod to the right and to the left is a table to sit with laptop for robot set up, in this case with the next variation on out sheep herder, in this case a very much more 'beefed up' version made up from recycled robot arms.....and Lego!

Wednesday, May 25, 2022

Toot Toot

 There's a bit of Shepherds Pi and the Farmyard Tour that gives points for audio control, so this is our take on it. This doesn't do much, listens for a whistle and then provides basic interpretation into commands. One whistle 'toot' is a command, as well as two and three, and after a brief interlude, the last command is cancelled. 



For this, a Pi pico is paired with a microphone....and a whistle...feeding the ADC of the pico with the audio signal, and then running an FFT against the signal to pick out the whistles' frequency, 2k7Hz in this case and converts blasts it into a logic signal.




As with the other attachments, this supports the WHOU enquiry, GPIO handshake and returns the info of TOOT, TOO2 and TOO3 as commands.  Power and serial comms are via USB for easy attachment.

Seems a bit of a small post, but it's a complete sub-project that contributes.



Thursday, March 17, 2022

Attachment action

After a bit of a delay actually doing things, now entering the phase of actually testing some solutions. 

First up is the Shepherds Pi herding solution. The chassis is working well and to get the basic herder fitted just required some bolts, power and a USB cable. This wasn't just a sudden event and the interface has undergone a bit of refinement.


What looks to be the final interface is to run attachment microcontrollers from USB via a hub, with a separate power supply to run motors and servos, putting the power conversion on the attachment to optimise for the particular attachment, standard power supplied being 12V.


This is a picture of the shepherding attachment, controlled by a Pico on a Kitronik control board connected to the arm servos with a small buck converter power supply and power display. Also shown is a handle to aid picking the chassis up as it's now getting a significant amount of handling. The control board is a bit over specified here but in the next iteration will have to run two stepper motors.

The shepherding attachment has gone through several phases, and the one shown is good enough for basic positional testing using dead reckoning. Here's a video of a basic operation.


Some erratic movement on the arms due to controller initialisation signals, but this is a good test of a sheep 'fetch'.

While the arms do a good job with the sheep, they do need to do more and so the turbo-shepherd version is in construction and testing. Here's a video of it in test mode. 


Here a stepper motor is now giving lift to the arm to allow it to be move up and out of the way, open and close the gate, as well as potentially pick up recalcitrant sheep!

With the herding going well, the Hungry Cattle challenge is almost complete.

The montage above shows the feed dispenser attached to the chassis. The feed hoppers are attached to a turntable mounted between the wheels of the chassis. The robot feeder drives up alongside a trough, the turntable rotates a full hopper over the trough and dispenses feed. The robot then moves on to the next trough, meanwhile the hopper rotates the next hopper into position. Once feeding complete, the hopper turntable rotates back to a central position for refilling. The controller here is a Pico on a dedicated bit of stripboard to run three servos and a small stepper. 

Finally, a bit of dimension checking. The rules say it all has to fit withing the marked rectangles, so here we are, fitting in!
Picture with arms extended

and then with arms parked.
May need to tidy a few wires up!!!! 

That's it until next time, when we'll have some remote control via a PS3 controller, a dog whistle and maybe even some voice commands.....come by Shep!



Tuesday, February 15, 2022

High Speed Hoppers, bit of apple picking and some scary sheep handlers

The Hungry Cattle solution is still going well and we now have three hoppers mounted on a turntable which reside withing the wheel base when fully loaded, but can selectively swing out to dump their feed into a trough, either at the front of the robot or to the side.

This is the 'closed' position with the weight centralised. This isn't the competition chassis, just the test one.


And then its swung round to place a hopper over a trough at the side, and also at the front if that is advantageous.

New hopper funnels are being made to throw the feed further and try to get a more even spread in the trough, and hold a bit more feed to ensure coverage.

The turntable is run on a small stepper motor but there isn't any synchronisation fitted yet so it a bit hit and miss as to where it stops. Here's a video of it rotating.


Once synchronised, the hopper will rotate in 90 degree steps. When the hopper stops over a trough, the hopper releases it's feed using the drum mechanism and the robot can move on to the next trough. The hoppers rotate back to the inboard position for refilling.

Not a lot of news published on the apple picking. Here we have one of the apple pickers and a tree worthy of Ikea, laser cut from 3mm ply.



Scary carpet eh?


The turbo-shepherd has had the first iteration of the sheep handling arms tested.



This hasn't been that successful but the idea is working ok. To improve its operation, more powerful servo motors will be chosen and the layout of the components optimised to be able to 'herd' the sheep more effectively. The video shows the arms being parked, open wide to gather sheep, and also selectively moving to push sheep to the side. The movement could be a lot faster and smoother but this is primarily to test the concepts.

Here is the updated design being built.


The challenge has been to loose as much of the mechanism in height rather than loose herding capacity, the parked position being less than 225mm wide and 100mm deep, and folding out to 325mm wide to gather the sheep. before pushing them into the sheep pen. The arms will also operate the gate mechanism.

Next up, hopefully first views of the apple picker, completing the Hungry Cattle hardware and maybe a bit more of the sheep handler design built. On a personal note, I'm just pleased RS components delivered my reel of solder today :)  


Saturday, February 12, 2022

Start of an arena

 While a lot is happening, somehow there's never much to see for all the effort, but at our last PiWars get together we had the start of our arena to view.


It's made out of flooring board so can be dismantled into three parts and we've marked it out in 250mm squares to start getting the feel for what the space looks like.  No apple tree on view, but some test cardboard sheep and wolves, together with our newly made cattle troughs, fill up the space. 

It was also an opportunity to look at motor speeds and load capacity. This robot is our test bed for a set of four brushless motors. We've loaded it up at the front with a 1kg weight to simulate a full load of cattle feed (rice) to see what its performance is.


So speed tests put the crossing of the arena from standing start to stop at 2 seconds with the full load, which we're happy with. None of the attachments are very heavy so we're ok to go. Might need a bit more grip on the wheels to get better acceleration and ensure a skid free stop, but the work we described in the last blog has paid off, so success. A small accident in control during one of the tests demonstrated it also turns very quickly as well!

Also on demonstration on the arena are the navigation beacons.


These will be used by the vision cameras on the robot chassis to give an accurate position within the arena and provide the navigation references. This picture shows three coded beacons but the arena will be surrounded by them eventually.

As well as the tea and biscuits, a quick view of the kitchen table gives an overview of what's been going on.


In the foreground on the far left is the time synchronisation test rig to provide an accurate common time reference to the independent stereo cameras.

Beside it in yellow and black, is the modified cattle feed hopper, extended at the top to hold more feed, and fitted with a large drum to deliver feed to the trough faster. Also shown are two other hoppers in green with out the capacity extension. The need for the extension followed tests with the accurate 3D printed troughs showed that we hadn't been delivering enough feed to the trough to cover the centre line so we needed to increase the amount. We could have designed some sort of shaking device to even out the feed in the trough but just increasing the amount was faster and unsophisticated.

Between the two green hoppers is the new turntable to rotate hoppers over the side of the robot chassis for dispensing, and then returning them to an inboard position to keep the weight distribution within the robot wheels.

At the rear is a yellow test robot chassis powered by an ESP32 which is used to test attachments and in front of that a pair of arms for gathering and gripping sheep. We found that the cardboard sheep we'd made were actually to big and so the arms couldn't quite reach round them! It also used fairly low cost servos which didn't perform well, so will need a bit of an upgrade before the next demonstration, as well as the lift mechanisms fitting with the new stepper motors.

Next meet will be a test of the Hungry Cattle challenge with remote control, progress! 

Finally just another picture of the arena with bits in place. We had made three wolves and six sheep but two sheep were lost, but we put them in place anyway.


Also on show are the beacons, troughs, stereo cameras, and four test bed chassis!!!!!

Friday, January 14, 2022

Enter Turbo-shepherd

 The Shepherds Pi challenge has been looked at a bit, but after a few trial runs with wooden paddles and cardboard sheep, it was obvious a bit of extra manipulation was going to be necessary to do it quickly, and not just shove the sheep and wolves around. Enter a pair or arms to help.





The arms are articulated to fold flat to the chassis, and then when folded out, articulate half way along to allow nudging, flipping and to form a funnel. Each arm can also be raised and lowered to be lifted out of the way quickly to provide easier chassis manoeuvring. Building arms this way also provides a mechanism to provide for gate opening and closing.

The first prototype for this has been built but currently a bit slow for competition, but will be ok for testing the concept and planning movements.


No peace for the busy, the basic Hungry Cattle hopper feeders work but when a side funnel is fitted, the rate of dispensing goes down and even stops unless the funnel has a steep angle. Experiments with this has set a good angle at 40 degrees or more which raises the hopper height by at least 100mm, making the whole robot approach 300mm height. This is ok in the rules but there will be a bit of weight in the feed so may make the chassis unstable at speed.

So a new concept is under review, rotating hoppers which sit in a carrousel and rotate out over the trough to be filled.


In the barn/filling position, the hoppers sit inside the footprint of the chassis, openings pointing upwards.



When alongside the trough, the carousel rotates to position a hopper over the trough where it empties and the chassis them moves on to the next trough. While the chassis is moving, the carrousel rotates again to position the next hopper, ready to empty in the next trough. Returning to the barn, the carousel rotates back to the starting position.

Because the hoppers now have larger openings, its expected that the rate of discharge will be faster than the previous design, and will be more reliable, there being no closing mechanism to jam. Placing the carousel like this also gives a clearer view for the stereo vision system to navigate.

That's all for now, more experiments to do, bits to make and robots to crash!!!