Friday, March 8, 2024

Zyderbot inspiration

Zyderbot Inspiration

 

So this is what the 2024 version of Zyderbot is based around, a Hummer disaster rescue truck, though for PiWars rescues the design doesn't quite work and we need appropriately sized wheels to cope with obstacles.

Working with one competition robot means that it needs to be adaptable for each of the challenges, and this involves wheel and accessory changes. To make this standard and easier, USB connectivity has been adopted for connectivity of accessory processors and sensors.

The picture shows the optical line sensor mounted on the bonnet and connected by USB. There are a few additions to this for handshaking but the idea is to be as straightforward as possible. 

To make accessories quick-change, they are designed with magnets to hold them in place.


Here is a bonnet for the Pi-Noon challenge with four magnets fitted and the holder. 


The chassis has four corresponding magnets to which the bonnet is attached. It also gives easy access to the battery compartment!

Eco-Disaster
While the chassis and controller are the core essential components, development of the accessories for some of the challenges needs a lot of coding instead. For Eco-Disaster, the camera sensor gives a development image to give reassurance that it's working as expected, and here are two images of barrels, one red the other green. The background colour is red indicating nothing of interest, white is a definite image detection, and violet shows up the reflections in the image due to uneven lighting.

The images look very similar because the sensor has to be instructed to switch between colours and gives a visual result based on what it's being asked to do, the controller only gets numerical information as feedback. The code for this is all in C++ and published on github here.

Writing the code is all very well, but it has to be used by the controller to steer  the robot and collect barrels. So here is our design for the barrel handler.




Two views of the barrel handler to be mounted on the rear of the chassis. It will reach out over the front of the robot during operation and be lifted out of the way when not required. 


There's lots of adjustment in the arm to allow tuning for lift distances but for most operations it will only need to lift a centimetre or so. It reuses one of the earlier Zombie gun mounts, so is over engineered for the task!!!



If you've read one of our earlier blog posts then you'll know there's a very large bearing inside the plastic gear casing which runs very smoothly and gives the mechanism a very smooth action.


Testing for challenges is difficult if the actual challenge course isn't available, so some sort of simulation has to be devised. For the Minesweeper challenge it's paper based.



This is plain wall paper, found hidden in the back of the garage, stuck together and cut to size with electrical tape to mark out the squares. The red square is three sheets of A4 red paper stuck together and to simulate the challenge, the square is picked up and moved to another square. When reading the challenge arena sizes, it's easy to take the space for granted, but this is the only place in the house that can accommodate the arena size, just!!!!

Time is starting to tick away, so probably more pictures of completed robots soon we hope!!!



No comments:

Post a Comment